AAAI.2018 - Humans and AI

Total: 10

#1 Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface [PDF] [Copy] [Kimi]

Authors: Dalin Zhang ; Lina Yao ; Xiang Zhang ; Sen Wang ; Weitong Chen ; Robert Boots ; Boualem Benatallah

Brain-Computer Interface (BCI) is a system empowering humans to communicate with or control the outside world with exclusively brain intentions. Electroencephalography (EEG) based BCIs are promising solutions due to their convenient and portable instruments. Despite the extensive research of EEG in recent years, it is still challenging to interpret EEG signals effectively due to the massive noises in EEG signals (e.g., low signal-noise ratio and incomplete EEG signals), and difficulties in capturing the inconspicuous relationships between EEG signals and certain brain activities. Most existing works either only consider EEG as chain-like sequences neglecting complex dependencies between adjacent signals or requiring pre-processing such as transforming EEG waves into images. In this paper, we introduce both cascade and parallel convolutional recurrent neural network models for precisely identifying human intended movements and instructions effectively learning the compositional spatio-temporal representations of raw EEG streams. Extensive experiments on a large scale movement intention EEG dataset (108 subjects,3,145,160 EEG records) have demonstrated that both models achieve high accuracy near 98.3% and outperform a set of baseline methods and most recent deep learning based EEG recognition models, yielding a significant accuracy increase of 18% in the cross-subject validation scenario. The developed models are further evaluated with a real-world BCI and achieve a recognition accuracy of 93% over five instruction intentions. This suggests the proposed models are able to generalize over different kinds of intentions and BCI systems.

#2 WiFi-Based Human Identification via Convex Tensor Shapelet Learning [PDF] [Copy] [Kimi]

Authors: Han Zou ; Yuxun Zhou ; Jianfei Yang ; Weixi Gu ; Lihua Xie ; Costas Spanos

We propose AutoID, a human identification system that leverages the measurements from existing WiFi-enabled Internet of Things (IoT) devices and produces the identity estimation via a novel sparse representation learning technique. The key idea is to use the unique fine-grained gait patterns of each person revealed from the WiFi Channel State Information (CSI) measurements, technically referred to as shapelet signatures, as the "fingerprint" for human identification. For this purpose, a novel OpenWrt-based IoT platform is designed to collect CSI data from commercial IoT devices. More importantly, we propose a new optimization-based shapelet learning framework for tensors, namely Convex Clustered Concurrent Shapelet Learning (C3SL), which formulates the learning problem as a convex optimization. The global solution of C3SL can be obtained efficiently with a generalized gradient-based algorithm, and the three concurrent regularization terms reveal the inter-dependence and the clustering effect of the CSI tensor data. Extensive experiments are conducted in multiple real-world indoor environments, showing that AutoID achieves an average human identification accuracy of 91% from a group of 20 people. As a combination of novel sensing and learning platform, AutoID attains substantial progress towards a more accurate, cost-effective and sustainable human identification system for pervasive implementations.

#3 A Low-Cost Ethics Shaping Approach for Designing Reinforcement Learning Agents [PDF] [Copy] [Kimi]

Authors: Yueh-Hua Wu ; Shou-De Lin

This paper proposes a low-cost, easily realizable strategy to equip a reinforcement learning (RL) agent the capability of behaving ethically. Our model allows the designers of RL agents to solely focus on the task to achieve, without having to worry about the implementation of multiple trivial ethical patterns to follow. Based on the assumption that the majority of human behavior, regardless which goals they are achieving, is ethical, our design integrates human policy with the RL policy to achieve the target objective with less chance of violating the ethical code that human beings normally obey.

#4 Towards Imperceptible and Robust Adversarial Example Attacks Against Neural Networks [PDF] [Copy] [Kimi]

Authors: Bo Luo ; Yannan Liu ; Lingxiao Wei ; Qiang Xu

Machine learning systems based on deep neural networks, being able to produce state-of-the-art results on various perception tasks, have gained mainstream adoption in many applications. However, they are shown to be vulnerable to adversarial example attack, which generates malicious output by adding slight perturbations to the input. Previous adversarial example crafting methods, however, use simple metrics to evaluate the distances between the original examples and the adversarial ones, which could be easily detected by human eyes. In addition, these attacks are often not robust due to the inevitable noises and deviation in the physical world. In this work, we present a new adversarial example attack crafting method, which takes the human perceptual system into consideration and maximizes the noise tolerance of the crafted adversarial example. Experimental results demonstrate the efficacy of the proposed technique.

#5 Coupled Deep Learning for Heterogeneous Face Recognition [PDF] [Copy] [Kimi]

Authors: Xiang Wu ; Lingxiao Song ; Ran He ; Tieniu Tan

Heterogeneous face matching is a challenge issue in face recognition due to large domain difference as well as insufficient pairwise images in different modalities during training. This paper proposes a coupled deep learning (CDL) approach for the heterogeneous face matching. CDL seeks a shared feature space in which the heterogeneous face matching problem can be approximately treated as a homogeneous face matching problem. The objective function of CDL mainly includes two parts. The first part contains a trace norm and a block-diagonal prior as relevance constraints, which not only make unpaired images from multiple modalities be clustered and correlated, but also regularize the parameters to alleviate overfitting. An approximate variational formulation is introduced to deal with the difficulties of optimizing low-rank constraint directly. The second part contains a cross modal ranking among triplet domain specific images to maximize the margin for different identities and increase data for a small amount of training samples. Besides, an alternating minimization method is employed to iteratively update the parameters of CDL. Experimental results show that CDL achieves better performance on the challenging CASIA NIR-VIS 2.0 face recognition database, the IIIT-D Sketch database, the CUHK Face Sketch (CUFS), and the CUHK Face Sketch FERET (CUFSF), which significantly outperforms state-of-the-art heterogeneous face recognition methods.

#6 Beyond Sparsity: Tree Regularization of Deep Models for Interpretability [PDF] [Copy] [Kimi]

Authors: Mike Wu ; Michael Hughes ; Sonali Parbhoo ; Maurizio Zazzi ; Volker Roth ; Finale Doshi-Velez

The lack of interpretability remains a key barrier to the adoption of deep models in many applications. In this work, we explicitly regularize deep models so human users might step through the process behind their predictions in little time. Specifically, we train deep time-series models so their class-probability predictions have high accuracy while being closely modeled by decision trees with few nodes. Using intuitive toy examples as well as medical tasks for treating sepsis and HIV, we demonstrate that this new tree regularization yields models that are easier for humans to simulate than simpler L1 or L2 penalties without sacrificing predictive power.

#7 Deception Detection in Videos [PDF] [Copy] [Kimi]

Authors: Zhe Wu ; Bharat Singh ; Larry Davis ; V. Subrahmanian

We present a system for covert automated deception detection using information available in a video. We study the importance of different modalities like vision, audio and text for this task. On the vision side, our system uses classifiers trained on low level video features which predict human micro-expressions. We show that predictions of high-level micro-expressions can be used as features for deception prediction. Surprisingly, IDT (Improved Dense Trajectory) features which have been widely used for action recognition, are also very good at predicting deception in videos. We fuse the score of classifiers trained on IDT features and high-level micro-expressions to improve performance. MFCC (Mel-frequency Cepstral Coefficients) features from the audio domain also provide a significant boost in performance, while information from transcripts is not very beneficial for our system. Using various classifiers, our automated system obtains an AUC of 0.877 (10-fold cross-validation) when evaluated on subjects which were not part of the training set. Even though state-of-the-art methods use human annotations of micro-expressions for deception detection, our fully automated approach outperforms them by 5%. When combined with human annotations of micro-expressions, our AUC improves to 0.922. We also present results of a user-study to analyze how well do average humans perform on this task, what modalities they use for deception detection and how they perform if only one modality is accessible.

#8 State of the Art: Reproducibility in Artificial Intelligence [PDF] [Copy] [Kimi]

Authors: Odd Erik Gundersen ; Sigbjørn Kjensmo

Background: Research results in artificial intelligence (AI) are criticized for not being reproducible. Objective: To quantify the state of reproducibility of empirical AI research using six reproducibility metrics measuring three different degrees of reproducibility. Hypotheses: 1) AI research is not documented well enough to reproduce the reported results. 2) Documentation practices have improved over time. Method: The literature is reviewed and a set of variables that should be documented to enable reproducibility are grouped into three factors: Experiment, Data and Method. The metrics describe how well the factors have been documented for a paper. A total of 400 research papers from the conference series IJCAI and AAAI have been surveyed using the metrics. Findings: None of the papers document all of the variables. The metrics show that between 20% and 30% of the variables for each factor are documented. One of the metrics show statistically significant increase over time while the others show no change. Interpretation: The reproducibility scores decrease with in- creased documentation requirements. Improvement over time is found. Conclusion: Both hypotheses are supported.

#9 Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing Their Input Gradients [PDF] [Copy] [Kimi]

Authors: Andrew Ross ; Finale Doshi-Velez

Deep neural networks have proven remarkably effective at solving many classification problems, but have been criticized recently for two major weaknesses: the reasons behind their predictions are uninterpretable, and the predictions themselves can often be fooled by small adversarial perturbations. These problems pose major obstacles for the adoption of neural networks in domains that require security or transparency. In this work, we evaluate the effectiveness of defenses that differentiably penalize the degree to which small changes in inputs can alter model predictions. Across multiple attacks, architectures, defenses, and datasets, we find that neural networks trained with this input gradient regularization exhibit robustness to transferred adversarial examples generated to fool all of the other models. We also find that adversarial examples generated to fool gradient-regularized models fool all other models equally well, and actually lead to more "legitimate," interpretable misclassifications as rated by people (which we confirm in a human subject experiment). Finally, we demonstrate that regularizing input gradients makes them more naturally interpretable as rationales for model predictions. We conclude by discussing this relationship between interpretability and robustness in deep neural networks.

#10 Adapting a Kidney Exchange Algorithm to Align With Human Values [PDF] [Copy] [Kimi]

Authors: Rachel Freedman ; Jana Schaich Borg ; Walter Sinnott-Armstrong ; John Dickerson ; Vincent Conitzer

The efficient allocation of limited resources is a classical problem in economics and computer science. In kidney exchanges, a central market maker allocates living kidney donors to patients in need of an organ. Patients and donors in kidney exchanges are prioritized using ad-hoc weights decided on by committee and then fed into an allocation algorithm that determines who get what—and who does not. In this paper, we provide an end-to-end methodology for estimating weights of individual participant profiles in a kidney exchange. We first elicit from human subjects a list of patient attributes they consider acceptable for the purpose of prioritizing patients (e.g., medical characteristics, lifestyle choices, and so on). Then, we ask subjects comparison queries between patient profiles and estimate weights in a principled way from their responses. We show how to use these weights in kidney exchange market clearing algorithms. We then evaluate the impact of the weights in simulations and find that the precise numerical values of the weights we computed matter little, other than the ordering of profiles that they imply. However, compared to not prioritizing patients at all, there is a significant effect, with certain classes of patients being (de)prioritized based on the human-elicited value judgments.